Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimorpholinium pentachloridoantimonate(III)

Li Zhuang Chen

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: clz1977@sina.com

Received 7 May 2009; accepted 21 May 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.021; wR factor = 0.046; data-to-parameter ratio = 23.6.

The asymmetric unit of the title compound, $(C_4H_{10}NO)_2$ [SbCl₅], consists of two morpholinium cations in chair conformations, and a pentachloridoantimonate dianion with the Sb^{III} ion in a slightly distorted square-pyramidal coordination environment. The morpholinium cations are connected to each other by $N-H \cdots O$ hydrogen bonds, and they link the chloride anions and the antimonate SbCl₃ group via $N-H \cdots Cl$ contacts.

Related literature

For a phase transition in bis(ethyldimethylammonium) pentachloridoantimonate(III), see: Bujak & Zaleski (1999); for the structure of N-methylpiperazinediium pentachloridoantimonate(III), see: Shen-Tu et al. (2008); for the lowtemperature phase of morpholinium tetrafluoridoborate, see: Owczarek et al. (2008).

Experimental

Crystal data (C₄H₁₀NO)₂[SbCl₅]

 $M_r = 475.26$

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.20$ mm

17552 measured reflections 3845 independent reflections

3759 reflections with $I > 2\sigma(I)$

 $\mu = 2.44 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int}=0.026$

Z = 4

Orthorhombic, $P2_12_12_1$ a = 9.0562 (18) Åb = 10.273 (2) Å c = 18.032 (4) Å V = 1677.6 (6) Å³

Data collection

Rigaku Mercury2 (2×2 bin mode)
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\min} = 0.567, \ T_{\max} = 0.616$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983)
Flack parameter: -0.005 (15)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1D \cdots Cl5^{i}$	0.90	2.35	3.180 (2)	154
$C1 - H1B \cdot \cdot \cdot Cl3^{ii}$	0.97	2.82	3.548 (3)	132
$N2-H2D\cdots Cl5^{iii}$	0.90	2.73	3.394 (2)	131
$N2-H2C\cdots Cl1^{iv}$	0.90	2.45	3.306 (3)	159
$N2-H2D\cdots O1^{v}$	0.90	2.44	2.848 (3)	108
$N1 - H1C \cdot \cdot \cdot Cl3$	0.90	2.75	3.463 (3)	137
$N1 - H1C \cdot \cdot \cdot Cl5$	0.90	2.72	3.448 (3)	138
Symmetry codes:	(i) $x - \frac{1}{2}, -y$	$+\frac{3}{2}, -z+2;$ ((ii) $x + \frac{1}{2}, -y + \frac{3}{2}$	$z_{z}^{2}, -z+2;$ (iii)

 $-x + \frac{3}{2}, -y + 2, z - \frac{1}{2}$; (iv) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (v) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2174).

References

Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775-1778.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Owczarek, M., Szklarz, P., Jakubas, R. & Lis, T. (2008). Acta Cryst. E64, 0667.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shen-Tu, C., Li, H. Y., Ma, X. J., Huang, W. & Jin, Z. M. (2008). Acta Cryst. E64, m146.

supplementary materials

Acta Cryst. (2009). E65, m689 [doi:10.1107/S1600536809019345]

Dimorpholinium pentachloridoantimonate(III)

L. Z. Chen

Comment

Structural investigation of crystalline solids undergoing phase transformation has been one of the classical areas of research among both chemists and physicists. The morpholinium tetrafluoroborate undergoes two reversible phase transitions (Ow-czarek *et al.* 2008). In our laboratory, a compound containing two morpholinium cations and a pentachloridoantimonate dianion in the asymmetric unit has been synthesized (Fig. 1), with the Sb^{III} ion in a slightly distorted square-pyramidal coordination environment.

The Sb atom is coordinated by five Cl atoms, with Sb—Cl distances ranging from 2.4045 (8) to 2.9230 (9) Å. The Sb—Cl distances are similar to the values of 2.4110 (10) to 2.9112 (11) Å reported by Shen-Tu *et al.* (2008) and slightly different to the values of 2.499 (4)–2.768 (4) Å reported by Bujak & Zaleski (1999). In the title compound the difference between the longest bond (Sb1—Cl5) and shortest bond (Sb1—Cl4) is *ca* 0.50 Å. The six-membered ring morpholinium cations have chair conformation. The morpholinium cations are connected to each other by N—H…O hydrogen bonds, and they link the Cl⁻ anions and the antimonate group SbCl₃ *via* N–H…Cl contacts (Table 1, Fig. 2).

Experimental

SbCl₃, morpholine and 20% aqueous HCl in a molar ratio of 1:1:1 were mixed and dissolved in sufficient ethanol by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed, collected and washed with dilute aqueous HCl.

Refinement

H atoms were included in calculated positions with N—H = 0.90 and C—H = 0.97 Å and included in the riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2. The packing viewed approximately along the *b* axis. Hydrogen bonds are drawn as dashed lines.

 $F_{000} = 936$

 $\theta = 3-27.5^{\circ}$ $\mu = 2.44 \text{ mm}^{-1}$ T = 298 KBlock, colourless $0.25 \times 0.20 \times 0.20 \text{ mm}$

 $D_x = 1.882 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 3845 reflections

Dimorpholinium pentachloridoantimonate(III)

Data collection

Rigaku Mercury2 (2× 2 bin mode) diffractometer	3845 independent reflections
Radiation source: fine-focus sealed tube	3759 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}$
T = 298 K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -13 \rightarrow 13$
$T_{\min} = 0.567, T_{\max} = 0.616$	<i>l</i> = −23→23
17552 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.021$	$w = 1/[\sigma^2(F_0^2) + (0.0201P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.046$	$(\Delta/\sigma)_{\rm max} = 0.003$
<i>S</i> = 1.24	$\Delta \rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$
3845 reflections	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$
163 parameters	Extinction correction: none

Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983) Secondary atom site location: difference Fourier map Flack parameter: -0.005 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of $F^{2^{a}}$ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on $F^{2^{a}}$, conventional R-factors R are based on F, with F set to zero for negative $F^{2^{a}}$. The threshold expression of $F^{2^{a}} > 2 \text{sigma}(F^{2^{a}})$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^{2^{a}}$ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7135 (3)	0.5818 (4)	0.95313 (17)	0.0425 (8)
H1A	0.7413	0.6730	0.9546	0.051*
H1B	0.7866	0.5329	0.9808	0.051*
C2	0.5653 (4)	0.5651 (3)	0.98887 (17)	0.0431 (7)
H2A	0.5395	0.4735	0.9906	0.052*
H2B	0.5680	0.5980	1.0393	0.052*
C3	0.4560 (3)	0.5973 (4)	0.86593 (18)	0.0459 (8)
H3A	0.3890	0.6514	0.8374	0.055*
H3B	0.4236	0.5076	0.8616	0.055*
C4	0.6092 (3)	0.6104 (3)	0.83609 (17)	0.0440 (8)
H4A	0.6114	0.5797	0.7852	0.053*
H4B	0.6372	0.7016	0.8361	0.053*
C5	0.8890 (4)	0.6967 (3)	0.68509 (19)	0.0461 (8)
H5A	0.7903	0.6605	0.6819	0.055*
H5B	0.9521	0.6478	0.6516	0.055*
C6	0.8854 (3)	0.8366 (3)	0.66122 (19)	0.0442 (8)
H6A	0.8495	0.8431	0.6107	0.053*
H6B	0.8196	0.8858	0.6931	0.053*
C7	1.0960 (3)	0.8730 (3)	0.74228 (15)	0.0376 (6)
H7A	1.0382	0.9243	0.7769	0.045*
H7B	1.1976	0.9028	0.7446	0.045*
C8	1.0880 (4)	0.7312 (3)	0.76295 (16)	0.0411 (7)
H8A	1.1510	0.6814	0.7299	0.049*
H8B	1.1247	0.7199	0.8131	0.049*
Cl1	0.82449 (9)	1.24256 (9)	0.98134 (4)	0.0472 (2)
Cl2	0.55039 (9)	1.24280 (7)	0.82480 (4)	0.04292 (19)
C13	0.39146 (8)	0.94495 (7)	0.87224 (4)	0.03967 (18)
Cl4	0.76734 (9)	0.96688 (8)	0.86621 (5)	0.04330 (19)
C15	0.60479 (7)	0.89292 (7)	1.04341 (4)	0.03298 (15)
N1	0.4534 (2)	0.6378 (2)	0.94513 (14)	0.0407 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H1C	0.4718	0.7238	0.9483	0.049*
H1D	0.3631	0.6231	0.9641	0.049*
N2	1.0376 (3)	0.8903 (2)	0.66613 (14)	0.0365 (6)
H2C	1.0966	0.8490	0.6336	0.044*
H2D	1.0366	0.9754	0.6544	0.044*
O1	0.7123 (2)	0.5387 (2)	0.87871 (12)	0.0377 (5)
O2	0.9422 (2)	0.6830 (2)	0.75855 (11)	0.0430 (5)
Sb1	0.580748 (19)	1.092473 (15)	0.928491 (9)	0.02418 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0334 (15)	0.054 (2)	0.0404 (17)	0.0040 (17)	-0.0037 (13)	-0.0141 (16)
C2	0.0470 (18)	0.0450 (18)	0.0374 (16)	-0.0036 (16)	0.0051 (15)	-0.0036 (13)
C3	0.0338 (16)	0.053 (2)	0.0507 (19)	0.0112 (17)	-0.0098 (13)	-0.0112 (17)
C4	0.0459 (18)	0.0497 (19)	0.0364 (16)	0.0138 (17)	0.0012 (13)	0.0029 (14)
C5	0.0397 (18)	0.0457 (18)	0.0531 (19)	-0.0173 (15)	-0.0041 (15)	0.0022 (15)
C6	0.0322 (16)	0.0501 (19)	0.0502 (19)	-0.0012 (15)	-0.0070 (14)	0.0157 (15)
C7	0.0376 (15)	0.0393 (15)	0.0360 (15)	-0.0078 (14)	0.0006 (13)	-0.0015 (12)
C8	0.0445 (17)	0.0466 (17)	0.0322 (15)	0.0030 (17)	-0.0056 (15)	0.0060 (12)
Cl1	0.0464 (4)	0.0481 (5)	0.0472 (5)	-0.0051 (4)	0.0000 (4)	-0.0024 (4)
Cl2	0.0547 (5)	0.0364 (4)	0.0377 (4)	-0.0036 (4)	-0.0052 (3)	0.0098 (3)
Cl3	0.0387 (4)	0.0398 (4)	0.0405 (4)	-0.0074 (3)	-0.0098 (3)	0.0001 (3)
Cl4	0.0394 (4)	0.0377 (4)	0.0529 (5)	0.0030 (4)	0.0191 (4)	-0.0080 (3)
C15	0.0284 (3)	0.0367 (4)	0.0338 (3)	0.0025 (3)	0.0000 (3)	0.0024 (3)
N1	0.0215 (11)	0.0392 (14)	0.0613 (18)	-0.0020 (10)	0.0108 (11)	-0.0130 (12)
N2	0.0381 (13)	0.0300 (13)	0.0413 (14)	-0.0037 (11)	0.0054 (10)	0.0085 (11)
O1	0.0298 (11)	0.0443 (13)	0.0389 (12)	0.0123 (9)	0.0013 (9)	-0.0074 (10)
O2	0.0443 (12)	0.0420 (11)	0.0427 (12)	-0.0127 (11)	0.0039 (10)	0.0146 (9)
Sb1	0.02303 (8)	0.02452 (8)	0.02498 (8)	-0.00036 (8)	0.00101 (7)	-0.00180 (7)

Geometric parameters (Å, °)

C1—O1	1.413 (4)	C6—N2	1.487 (4)
C1—C2	1.499 (4)	С6—Н6А	0.9700
C1—H1A	0.9700	С6—Н6В	0.9700
C1—H1B	0.9700	C7—N2	1.482 (4)
C2—N1	1.485 (4)	C7—C8	1.506 (4)
C2—H2A	0.9700	С7—Н7А	0.9700
C2—H2B	0.9700	С7—Н7В	0.9700
C3—N1	1.488 (4)	C8—O2	1.412 (4)
C3—C4	1.494 (4)	C8—H8A	0.9700
С3—НЗА	0.9700	С8—Н8В	0.9700
С3—Н3В	0.9700	Cl1—Sb1	2.8562 (9)
C4—O1	1.416 (4)	Cl2—Sb1	2.4405 (8)
C4—H4A	0.9700	Cl3—Sb1	2.5028 (8)
C4—H4B	0.9700	Cl4—Sb1	2.4045 (8)
C5—O2	1.417 (4)	N1—H1C	0.9000
C5—C6	1.501 (4)	N1—H1D	0.9000

С5—Н5А	0.9700	N2—H2C	0.9000
С5—Н5В	0.9700	N2—H2D	0.9000
01—C1—C2	111.4 (2)	С5—С6—Н6В	110.0
01—C1—H1A	109.3	H6A—C6—H6B	108.4
C2—C1—H1A	109.3	N2—C7—C8	109.1 (2)
01—C1—H1B	109.3	N2—C7—H7A	109.9
C2—C1—H1B	109.3	С8—С7—Н7А	109.9
H1A—C1—H1B	108.0	N2—C7—H7B	109.9
N1—C2—C1	109.0 (3)	С8—С7—Н7В	109.9
N1—C2—H2A	109.9	H7A—C7—H7B	108.3
C1—C2—H2A	109.9	O2—C8—C7	111.7 (3)
N1—C2—H2B	109.9	O2—C8—H8A	109.3
C1—C2—H2B	109.9	С7—С8—Н8А	109.3
H2A—C2—H2B	108.3	O2—C8—H8B	109.3
N1—C3—C4	109.6 (2)	С7—С8—Н8В	109.3
N1—C3—H3A	109.8	H8A—C8—H8B	107.9
С4—С3—НЗА	109.8	C2—N1—C3	111.0 (2)
N1—C3—H3B	109.8	C2—N1—H1C	109.4
C4—C3—H3B	109.8	C3—N1—H1C	109.4
НЗА—СЗ—НЗВ	108.2	C2—N1—H1D	109.4
O1—C4—C3	111.7 (3)	C3—N1—H1D	109.4
O1—C4—H4A	109.3	H1C—N1—H1D	108.0
C3—C4—H4A	109.3	C7—N2—C6	110.0 (2)
O1—C4—H4B	109.3	C7—N2—H2C	109.7
C3—C4—H4B	109.3	C6—N2—H2C	109.7
H4A—C4—H4B	107.9	C7—N2—H2D	109.7
O2—C5—C6	111.7 (3)	C6—N2—H2D	109.7
O2—C5—H5A	109.3	H2C—N2—H2D	108.2
С6—С5—Н5А	109.3	C1—O1—C4	111.0 (2)
O2—C5—H5B	109.3	C8—O2—C5	109.6 (2)
С6—С5—Н5В	109.3	Cl4—Sb1—Cl2	93.49 (3)
H5A—C5—H5B	107.9	Cl4—Sb1—Cl3	88.12 (3)
N2—C6—C5	108.5 (2)	Cl2—Sb1—Cl3	89.74 (3)
N2—C6—H6A	110.0	Cl4—Sb1—Cl1	84.40 (3)
С5—С6—Н6А	110.0	Cl2—Sb1—Cl1	90.06 (3)
N2—C6—H6B	110.0	Cl3—Sb1—Cl1	172.49 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1D····Cl5 ⁱ	0.90	2.35	3.180 (2)	154
C1—H1B···Cl3 ⁱⁱ	0.97	2.82	3.548 (3)	132
N2—H2D····Cl5 ⁱⁱⁱ	0.90	2.73	3.394 (2)	131
N2—H2C···Cl1 ^{iv}	0.90	2.45	3.306 (3)	159
N2—H2D····O1 ^v	0.90	2.44	2.848 (3)	108
N1—H1C···Cl3	0.90	2.75	3.463 (3)	137
N1—H1C···Cl5	0.90	2.72	3.448 (3)	138

Symmetry codes: (i) *x*-1/2, -*y*+3/2, -*z*+2; (ii) *x*+1/2, -*y*+3/2, -*z*+2; (iii) -*x*+3/2, -*y*+2, *z*-1/2; (iv) -*x*+2, *y*-1/2, -*z*+3/2; (v) -*x*+2, *y*+1/2, -*z*+3/2.

